
Chemical Engineering Journal 83 (2001) 145–154

An improved on-line monitoring procedure for multiloop control systems

Bing Wang, Min-Sen Chiu∗
Department of Chemical and Environmental Engineering, National University of Singapore, Singapore 119260, Singapore

Received 5 September 1999; received in revised form 7 July 2000; accepted 19 July 2000

Abstract

In this paper, an improved relay-based monitoring procedure is presented to on-line identify the maximum closed loop log modulus,
Lc,max, for multiloop control systems. The proposed method addresses two potential problems inherent in previous methods: (a) too many
relay tests are required; (b) the monitoring information fails to be exploited to redesign the controller when there is incentive to do so.
Simulation results demonstrate the successful applications of the proposed on-line monitoring procedure as well as its utility in the redesign
of the controllers. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Despite the developments and increasing sophistication in
advanced controller designs in the past two decades, mul-
tiloop PID/PI controllers are still in widespread use in the
process industries. This is because multiloop PID/PI con-
trollers are easier to implement and cheaper to maintain as
compared to other advanced multivariable control schemes.
In addition, they are also known to be versatile for a wide
range of processes and therefore are well accepted by oper-
ators. Based on the fact that PID/PI controllers will continue
to dominate in process industries in the foreseeable future,
any aspect that can lead to the effective use of this class of
controllers will certainly bring about much economic bene-
fit. This consideration is very important given the fact that
many existing multiloop PID/PI controllers do not perform
as well as expected. This is because most chemical processes
are nonlinear in nature and process characteristics change
by operating conditions and/or are difficult to identify pre-
cisely. Thus, the process model used for controller design
may not give an accurate description of the actual process
as the process dynamics vary with time. As a result, the per-
formance of these controllers may dramatically deteriorate.
Hence, it is an important task to have an efficient tool to
determine on-line if the controller performance meets the
design specification.

The goal of monitoring is to provide information which
can be used to assess the current status of the controller and
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to assist the plant operators in deciding whether a redesign
of the controller is necessary. However, most of the monitor-
ing procedures reported in the literature are based on time
domain techniques [1,2], and the deterioration of the control
system cannot be determined until a significant deviation in
the controlled variable is observed [3]. Recently, Chiang and
Yu [3] and Ju and Chiu [4] proposed monitoring procedures
based on relay tests to on-line identify the maximum closed
loop log modulus [5], Lc,max, for SISO and MIMO systems,
respectively. Lc,max is considered because its value can be
used to gauge the compromise made between performance
and robustness of the controller. However, these previous
results suffer two drawbacks. First, the monitoring proce-
dures are tedious since the number of relay tests increases
exponentially with the dimension of the system. Second,
the information obtained from these monitoring procedures
cannot be readily used in the redesign of the controller.

In this work, an alternative monitoring procedure is de-
veloped to address the aforementioned problems. The paper
is organized as follows. Some basic concepts are introduced
first, followed by the development of proposed monitoring
procedure. Finally, one 3 × 3 linear system and one 2 × 2
nonlinear system are used to illustrate the proposed method
and the conclusions are drawn.

2. Preliminaries

Relay feedback. Åström and Hägglund [6] introduced an
autotuning procedure by using a relay inserted as a feedback
controller as shown Fig. 1, where N denotes the relay. It
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Nomenclature

CA concentration of component A
Cp, Cpc heat capacity of feed stream

and coolant
E/R activation energy
FFT fast Fourier transform
G process transfer function
hA heat transfer coefficient
K controller transfer function
k0 reaction rate constant
Kp controller gain
L number of the sampled points
Lc,max maximum closed loop log modulus
N describing function of relay
q, qc feed and coolant flow-rate
T temperature of the CSTR
Tcf , Tf inlet coolant temperature and

feed temperature
Ts sampling interval
U(jω),Us(jω) frequency responses of

u(t) and us(t)

u(t), u(t), u(t) signals of process inputs
us(t), us(t) the periodic stationary cycle

part of u(t) and u(t)

V (jω), Vs(jω) frequency responses of

v(t) and vs(t)

v(t), v(t), v(t) signals of controller outputs
vs(t), vs(t) the periodic stationary cycle

part of v(t) and v(t)

Greek symbols
�H heat of reaction
�U(jω),�V (jω) frequency responses of

�u(t) and �v(t)

�u(t),�u(t) transient part of u(t) and u(t)

�v(t),�v(t) transient part of v(t) and v(t)

ρ, ρc density of reactor contents
and coolant

τ c cycle period
τ i controller reset time
ωi frequency (2πi/LTs)

Fig. 1. Åström–Hägglund relay feedback system.

was reported that most of the process systems will exhibit
stationary oscillation under relay feedback. Two types of
relays are normally considered: an ideal relay and a relay
with hysteresis.

Fast Fourier transform. Fast Fourier transform (FFT) is
an efficient algorithm to transform time domain data into
frequency domain. Suppose that the function f (t) is abso-
lutely integrable, i.e. f (t) decays to zero in a finite time, or
f (mTs) = 0 for m ≥ L, where Ts is the sampling time, its
frequency responses can be computed as [7]

F(ωi)=Ts

L−1∑
m=0

f (mTs) e−jωimTs , i = 0, 1, . . . , L − 1 (1)

where the frequency ωi is defined as

ωi = 2πi

LTs
, i = 0, 1, . . . , L − 1 (2)

Lc,max. The objective of the proposed monitoring
procedure is to monitor controller performance by on-line
identification of the maximum closed loop log modulus,
Lc,max [5]. For multivariable feedback control systems,
Lc,max is defined as

Lc,max = 20 log

(
max
ω

∣∣∣∣−1 + det(I + GK)

det(I + GK)

∣∣∣∣
)

(3)

where G and K denote the process and controller transfer
function, respectively.

From its definition, Lc,max measures the closeness of the
curve GK to the critical point (−1, 0) in the Nyquist plot.
Therefore Lc,max can be used to measure the robustness of
the control systems. A large Lc,max means that the control
systems can tolerate a small amount of uncertainties. Thus an
increasing trend in the Lc,max will indicate the proximity to
the closed loop instability. Therefore, retuning of controller
is then necessary to maintain stability. Luyben [8] proposed
the BLT tuning rule Lc,max = 2n for the n × n multiloop
control systems.

3. An improved monitoring procedure for multiloop
systems

To on-line monitor Lc,max for an n× n multiloop control
system, Ju and Chiu [4] proposed a monitoring scheme as
depicted in Fig. 2. In each control loop, a selector is placed
between the controller and process so that the control loop
can be put either on control mode (denoted by c) or mon-
itoring mode (denoted by m). Subsequently, Lc,max can
be calculated on-line from the information obtained in the
relay tests [4]. However, the monitoring procedure in [4]
is tedious since the number of relay tests increases expo-
nentially with the dimension of the system. To simplify the
monitoring procedure in [4], this paper presents an alter-
native monitoring procedure in which n relays are placed
simultaneously between the controllers and process in all
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Fig. 2. Monitoring scheme for an n × n multiloop control system.

control loops, i.e. n control loops are in monitoring mode in
Fig. 2. In order to calculate Lc,max on-line, the aforemen-
tioned relay test needs to be conducted n times by using n
relays with different hysteresis. An immediate benefit of the
proposed method is that the number of relay tests required
in the monitoring procedure is significantly smaller than
that in [4], e.g. the proposed method needs two relay tests
as compared to nine tests in [4] for a 2 × 2 system. Finally,
from the system responses obtained during the monitoring
procedure, Lc,max can be computed using Eqs. (15) and
(16) derived in the ensuing development of this section.

In what follows, the analysis of the proposed monitoring
procedure is given. For each relay test in the proposed pro-
cedure, the relay input vi(t) and relay output ui(t), where
the superscript i (i = 1, 2, . . . , n) denotes the serial num-
ber of the relay test, are recorded until stationary oscillation
is reached. After n relay tests are conducted, the following
two matrices can be set up:

v(t) = [
v1(t) v2(t) . . . vn(t)

] =




v1
1(t) v2

1(t) · · · vn1 (t)

v1
2(t) v2

2(t) · · · vn2 (t)

...
...

. . .
...

v1
n(t) v2

n(t) · · · vnn(t)




(4)

u(t) = [
u1(t) u2(t) . . . un(t)

]

=




u1
1(t) u2

1(t) · · · un1(t)

u1
2(t) u2

2(t) · · · un2(t)

...
...

. . .
...

u1
n(t) u2

n(t) · · · unn(t)




(5)

where the subscript of the elements in v(t) and u(t) is the

index of control loops. For example, v2
1(t) is the relay input

in the control loop 1 of the second relay test.
From the monitoring scheme in Fig. 2, the following

equation holds:

K(s)G(s) = −V (s)U(s)−1 (6)
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where V (s) and U(s) are the Laplace transforms of
v(t) and u(t). In frequency domain, Eq. (6) is written as

K(jω)G(jω) = −V (jω)U(jω)−1 (7)

Since both relay inputs v(t) and relay outputs u(t) are
not absolutely integrable, they cannot be transformed to
frequency response by directly using FFT. However, since
both signals reach to stationary oscillation, they can be
decomposed as follows [9]:

v(t) = �v(t) + vs(t) =




�v1
1(t) �v2

1(t) · · · �vn1 (t)

�v1
2(t) �v2

2(t) · · · �vn2 (t)

...
...

. . .
...

�v1
n(t) �v2

n(t) · · · �vnn(t)




+




v1
1s(t) v2

1s(t) · · · vn1s(t)

v1
2s(t) v2

2s(t) · · · vn2s(t)

...
...

. . .
...

v1
ns(t) v2

ns(t) · · · vnns(t)




(8)

u(t) = �u(t) + us(t) =




�u1
1(t) �u2

1(t) · · · �un1(t)

�u1
2(t) �u2

2(t) · · · �un2(t)

...
...

. . .
...

�u1
n(t) �u2

n(t) · · · �unn(t)




+




u1
1s(t) u2

1s(t) · · · un1s(t)

u1
2s(t) u2

2s(t) · · · un2s(t)

...
...

. . .
...

u1
ns(t) u2

ns(t) · · · unns(t)




(9)

where vs(t) or us(t) are the periodic stationary responses

of v(t) and u(t), respectively. Since both �v(t) and �u(t)

eventually decay to zero, their frequency responses can be
obtained with the standard FFT technique, i.e. at each fre-
quency ωi (i = 0 toL − 1):

�V (jωi) = Ts




L−1∑
m=0

�v1
1(mTs) e−jωimTs

L−1∑
m=0

�v2
1(mTs) e−jωimTs · · ·

L−1∑
m=0

�vn1 (mTs) e−jωimTs

L−1∑
m=0

�v1
2(mTs) e−jωimTs

L−1∑
m=0

�v2
2(mTs) e−jωimTs · · ·

L−1∑
m=0

�vn2 (mTs) e−jωimTs

...
...

. . .
...

L−1∑
m=0

�v1
n(mTs) e−jωimTs

L−1∑
m=0

�v2
n(mTs) e−jωimTs · · ·

L−1∑
m=0

�vnn(mTs) e−jωimTs




(10)

�U(jωi) = Ts




L−1∑
m=0

�u1
1(mTs) e−jωimTs

L−1∑
m=0

�u2
1(mTs) e−jωimTs · · ·

L−1∑
m=0

�un1(mTs) e−jωimTs

L−1∑
m=0

�u1
2(mTs) e−jωimTs

L−1∑
m=0

�u2
2(mTs) e−jωimTs · · ·

L−1∑
m=0

�un2(mTs) e−jωimTs

...
...

. . .
...

L−1∑
m=0

�u1
n(mTs) e−jωimTs

L−1∑
m=0

�u2
n(mTs) e−jωimTs · · ·

L−1∑
m=0

�unn(mTs) e−jωimTs




(11)

For a periodic function, the next equation [10] can be used
to compute its frequency response:

Fp(s) = 1

1 − e−sτc

∫ τc

0
fp(t) e−st dt (12)

where Fp(s) denotes the Laplace transform of a periodic
function fp(t) with period τ c, i.e. fp(t) = fp(t + τc) ∀t .

By using Eq. (12), the frequency responses of vs(t) or us(t)

are obtained as follows:
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Vs(jωi) =




Ts

1 − e−jωiτ
1
c1

N1
1∑

m=0

v1
1s(mTs) e−jωimTs

Ts

1 − e−jωiτ
2
c1

N2
1∑

m=0

v2
1s(mTs) e−jωimTs · · · Ts

1 − e−jωiτ
n
c1

Nn
1∑

m=0

vn1s(mTs) e−jωimTs

Ts

1 − e−jωiτ
1
c2

N1
2∑

m=0

v1
2s(mTs) e−jωimTs

Ts

1 − e−jωiτ
1
c2

N2
2∑

m=0

v2
2s(mTs) e−jωimTs · · · Ts

1 − e−jωiτ
n
c2

Nn
2∑

m=0

vn2s(mTs) e−jωimTs

...
...

. . .
...

Ts

1 − e−jωiτ
1
cn

N1
n∑

m=0

v1
ns(mTs) e−jωimTs

Ts

1 − e−jωiτ
2
cn

N2
n∑

m=0

v2
ns(mTs) e−jωimTs · · · Ts

1 − e−jωiτ
n
cn

Nn
n∑

m=0

vnns(mTs) e−jωimTs




(13)

Us(jωi) =




Ts

1 − e−jωiτ
1
c1

N1
1∑

m=0

u1
1s(mTs) e−jωimTs

Ts

1 − e−jωiτ
2
c1

N2
1∑

m=0

u2
1s(mTs) e−jωimTs · · · Ts

1 − e−jωiτ
n
c1

Nn
1∑

m=0

un1s(mTs) e−jωimTs

Ts

1 − e−jωiτ
1
c2

N1
2∑

m=0

u1
2s(mTs) e−jωimTs

Ts

1 − e−jωiτ
2
c2

N2
2∑

m=0

u2
2s(mTs) e−jωimTs · · · Ts

1 − e−jωiτ
n
c2

Nn
2∑

m=0

un2s(mTs) e−jωimTs

...
...

. . .
...

Ts

1 − e−jωiτ
1
cn

N1
n∑

m=0

u1
ns(mTs) e−jωimTs

Ts

1 − e−jωiτ
2
cn

N2
n∑

m=0

u2
ns(mTs) e−jωimTs · · · Ts

1 − e−jωiτ
n
cn

Nn
n∑

m=0

unns(mTs) e−jωimTs




(14)

where Nl
k = (τ lck − Ts)/Ts (k, l = 1 ∼ n) and τ lck stands for

the period of stationary oscillations in the kth control loop
of the lth relay test.

Based on the preceding discussion, at each frequency ωi ,
Eq. (7) can be computed as

K(jωi)G(jωi)

= −(Vs(jωi) + �V (jωi))(Us(jωi) + �U(jωi))
−1 (15)

where Vs(jwi),�V (jωi), Us(jωi) and �U(jωi) are obtained

from Eqs. (13), (10), (14) and (11), respectively. Conse-
quently, the frequency response of K(jwi)G(jωi) in the
frequency interval [ 0 2π(L − 1)/LTs ] can be obtained.
Finally, to calculate Lc,max, one notes that Eq. (3) can be
rewritten as

Lc,max = 20 log

(
max
ω

∣∣∣∣−1 + det(I + KG)

det(I + KG)

∣∣∣∣
)

(16)

Since the frequency response of KG is known, Lc,max is
readily computed from Eq. (16).

4. Examples

4.1. Linear system

To test the proposed monitoring procedure, a 3 × 3 mul-
tiloop control system studied in [11] is considered, where

G(s) =




0.66 e−2.6s

6.7s + 1

−0.61 e−3.5s

8.64s + 1

−0.0049 e−s

9.06s + 1

1.11 e−6.5s

3.25s + 1

−2.36 e−3s

5s + 1

−0.01 e−1.2s

7.09s + 1

−34.68 e−9.2s

8.15s + 1

46.2 e−9.4s

10.9s + 1

0.87(11.61s + 1) e−s

(3.89s + 1)(18.8s + 1)




(17)

K(s) =




1.509

(
1 + 1

35.26s

)
0 0

0 −0.295

(
1 + 1

38.7s

)
0

0 0 2.629

(
1 + 1

14.211s

)




(18)
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Fig. 3. Closed loop log modulus versus frequency.

In the proposed monitoring procedure, three relay tests are
performed. The identified Lc,max is 4.357 dB as illustrated in
Fig. 3. It differs from the actual value of 4.342 dB by 0.34%.
In comparison, the monitoring procedure by Ju and Chiu [4]
requires overwhelming 21 relay tests. Thus, it is clear that the
proposed method is more effective than the previous method
without sacrificing the accuracy in the on-line identification
of Lc,max.

Another advantage of the proposed method is that the
information obtained from the monitoring procedure can be
readily used in the retuning of the controller. Since both
the frequency response of K(s)G(s) and the controller’s
parameters are known, the frequency response of the current
process dynamics can be obtained as

G(jω) = K(jω)−1K(jω)G(jω) (19)

With this updated information of the process, the controller
can be redesigned if there is an incentive to do so. For exam-
ple, according to the BLT criterion [8], a reasonable value
of Lc,max for a 3 × 3 system is 6 dB. To achieve this, a
“retuning” factor β is first introduced such that

K∗(s) = 1

β




1.509

(
1 + 1

β

1

35.26s

)
0 0

0 −0.295

(
1 + 1

β

1

38.7s

)
0

0 0 2.629

(
1 + 1

β

1

14.211s

)




(20)

Next, with the identified G obtained from Eq. (19), Lc,max
can be adjusted on-line to be equal to 6 dB by tuning β.
The resulting β from this procedure is 0.871 as compared to
0.869 obtained when the process is known exactly. Finally,
it is worth noting that, unlike the detuning factor used in the
BLT method, β is allowed to be smaller than 1 as shown
above. As such, β is more appropriately termed as “retuning”
factor in the context discussed in this paper.

Fig. 4. The continuous stirred tank reactor.

4.2. Nonlinear system

The 2 × 2 nonlinear system under consideration is a con-
tinuous stirred tank reactor (CSTR) shown in Fig. 4. A sin-
gle irreversible, exothermic reaction A → B is assumed to
occur in the reactor. The process model consists of two non-
linear ordinary differential equations [12],

ĊA = q

100
(CAf − CA) − k0CA e−E/RT (21)

Ṫ = q

100
(Tf − T ) + (−�H)k0CA

ρCp

e−E/RT

+ ρcCpc

100ρCp

qc[1 − e−hA/(qcρcCpc)] × (Tcf − T ) (22)

where CA is the effluent concentration of component A,
T the reactor temperature, CAf the feed composition, and
qc the coolant flow-rate. The remaining model parameters
are defined in the Nomenclature and the nominal operating
conditions are given in Table 1 . A 2 × 2 multiloop PI con-
troller is designed to control the effluent concentration at
set-point Cset

A = 0.1 mol/l and the temperature at set-point
T set = 438.54 K by manipulating qc and CAf , respectively.

Table 1
Nominal CSTR operating conditions

q = 100 l/min E/R = 1 × 104 K
CAf = 1 mol/l −�H = 2 × 105 cal/mol
Tf = 350 K ρ, ρc = 1000 g/l
Tcf = 350 K Cp,Cpc = 1 cal/(g K)

hA = 7 × 105 cal/(min K) qc = 103.41 l/min (operating condition 1)
k0 = 7.2 × 1010 min−1 qc = 108.10 l/min (operating condition 2)
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Fig. 5. Closed loop log modulus versus frequency for the CSTR example: solid line — Cset
A = 0.1 mol/l, T set = 438.54 K; dashed line —

Cset
A = 0.12 mol/l, T set = 434.64 K.

Fig. 6. Closed loop responses at operating condition, Cset
A = 0.1 mol/l and T set = 438.54 K.
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The parameters of the PI controller in the concentration
loop are Kc = 50, τi = 0.5 and those in the temperature
loop are Kc = 0.0054, τi = 1.92. The measurement time
delays of concentration loop and temperature loop are 0.1
and 0.05 min, respectively.

To illustrate the application of the proposed monitoring
procedure, the robustness of the multiloop PI controller at
two different operating conditions is assessed from the com-
parison of the identified Lc,max. For the aforementioned
operating condition, the Lc,max is equal to 4.74 dB which
is the peak value of solid line in Fig. 5. Since the rec-
ommended Lc,max value is 4 dB for this 2 × 2 system, it
implies that the control system is quite robust at this op-
erating point. Assume that the PI controller remains un-
changed, but the operating condition is changed to Cset

A =
0.12 mol/l and T set = 434.64 K. Based on the same moni-
toring procedure, the Lc,max is found to increase to 36.03 dB
(dashed line in Fig. 5), which means that the stability mar-
gin of the control system is significantly smaller than that in

Fig. 7. Closed loop responses at operating condition, Cset
A = 0.12 mol/l and T set = 434.64 K.

previous operating condition. Consequently, an oscillatory
or even unstable response is likely to occur if disturbances
enter into the control system or a set-point change is made.
Simulation results in Figs. 6 and 7 confirm this observation
by comparing the closed loop responses when the coolant
temperature changes from 350 to 353.5 K at t = 20, and
subsequently a 10% set-point change in composition loop
occurs at t = 200, at two respective operating conditions.
It is clear that the controller gives much better servo and
regulatory responses at original operating condition, namely
Cset

A = 0.1 mol/l and T set = 438.54 K. In comparison, the
control system exhibits a highly oscillatory response when
set-point change is made at the second operating condition.

Since the multiloop PI controller is designed with respect
to the original operating condition, it is expected to perform
satisfactorily in the vicinity of Cset

A = 0.1 mol/l and T set =
438.54 K. Thus, it is not surprising that a large Lc,max results
from the changes in the operating conditions. This suggests
a need to retune controller parameters for better performance
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Fig. 8. Closed loop responses (after retuning of PI controller) at operating condition, Cset
A = 0.12 mol/l and T set = 434.64 K.

at the second operating condition. Using the same on-line
retuning procedure as discussed before, the retuning factor
β is found to be 2.62. Under the same simulation conditions,
the servo and regulatory responses of this new controller
are illustrated in Fig. 8. Evidently, a marked improvement
over the original controller design at the second operating
condition (Fig. 7) is achieved.

5. Conclusions

An improved relay-based monitoring procedure to iden-
tify Lc,max on-line is proposed. Compared to the previous
methods the testing time is greatly shortened since fewer
relay tests are needed. Furthermore, it allows one to adjust
controller parameters on-line by using the information ob-
tained from the monitoring procedure. Literature examples

are used to demonstrate the successful applications of the
proposed monitoring procedure as well as its utility in the
redesign of the controllers.
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